If ρ_{1} and are radii of curvature at the end points (extremities)
of any chord through pole of the cardioid
, then prove that :

$$
9\left(\rho_{1}^{2}+\rho_{2}^{2}\right)=16 a^{2}
$$

Q. 3 If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ then prove that:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{3}{(x+y+z)^{2}}
$$

OR

Show that the functions :

$$
u=x+y-z, v=x-y+z, w=x^{2}+y^{2}+z^{2}-2 y z
$$

are not independent to each other. Hence show that :

$$
(u+v)^{2}+(u-v)^{2}=4 w
$$

Q. 4 Evaluate $\int \cos x \cos 2 x \cos 3 x d x$.

OR

Prove that
Q. 5 Show that the area bounded by two circles $r=a \sqrt{2}$ and $r=2 a \cos \theta$ is :

OR

Evaluate where R is the region bounded above the
straight line $y=x$ and within the parabola

Code No. : C-292

Annual Examination - 2019

BCA Part - II
BCA-201
THEORETICAL FOUNDATION OF COMPUTER SCIENCE
Paper - II
DIFFERENTIATION AND INTEGRATION
Max.Marks: 50
Time : 3 Hrs.
Min.Marks: 20
Note : Section 'A', containing 10 very short-answer-type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type (f)d (a)

$$
\begin{aligned}
& \text { Section - 'A' } \\
& \text { Answer the following very short-answer-type questions in one } \\
& \text { or two sentences: } \\
& (\mathbf{1} \times \mathbf{1 0}=\mathbf{1 0})
\end{aligned}
$$

Q. $1 \quad$ Write the $\mathrm{n}^{\text {th }}$ derivative of \cos
Q. 2 Write the statement of Leibneitz theorem.
Q. 3 Write the formula of radius of curvature for polar equation.
Q. 4 Write the test for point of inflexion.
Q. 5 If

$$
\text { then evaluate } \frac{\partial^{2} f}{\partial x \partial y}
$$

Q. 6 Write the test for point of inflexion
Q. 7 Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
P.T.O.
Q. 8 Evaluate
Q. 9 Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$.
Q. 10 Write the formula for length of curve of the parametric equation $x=f(t), y=g(t)$ from t_{1} to .

Section - 'B'

Answer the following questions :
(3) $5=15$)
Q. 1 Find the value of C of the Rolle's theorem for the function in the closed interval

OR

If
then show that :

$$
\left(1-x^{2}\right) \cdot \frac{d^{2} y}{d x^{2}}-x \cdot \frac{d y}{d x}+m^{2} y=0
$$

Q. 2 If the point of inflexion of the curve
be $(-1,2)$ then show that $a=1, b=3$.

OR

For any curve prove that where is the radius of curvature and
Q. 3 Find the directional derivative of the surface $\phi=3 x^{2} y z-4 y^{2} z^{2}$ at the point $(2,-1,3)$ in the direction of vector $3 i-4 j+2 k$.

OR

If
Q. 4 Prove that $\int_{0}^{\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{\pi}{2 a b}$.

OR
Evaluate $\int \frac{x+8}{\sqrt{x^{2}+2 x+5}} d x$.
Q. 5 Change the order of integration in $\int_{0}^{1} \int_{y}^{1} x^{2} \cos \left(x^{2}-x y\right) d y d x$.

OR

Section - 'C'

Answer the following questions :
Q. 1 If
then show that
$(5 \times 5=25)$
, and

OR

By using Lagrange's mean-value theorem in
prove that :

$$
\text { where } x>0
$$

Q. 2 Trace the curve

