\qquad

Code No. : C-291
Annual Examination - 2019
BCA Part - II
(BCA-201)
THEORETICAL FOUNDATION
OF COMPUTER SCIENCE

Paper - I
 NUMERICAL ANALYSIS

Max.Marks : 50
Note : Section 'A', containing 10 very short-answer-type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions in one or two sentences:
$(1 \times 10=10)$
Q. 1 Find the sum and product of the roots of the equation
Q. 2 Write definition of degree of an equation.
Q. 3 Write definition of positive definite matrix.
Q. 4 Write definition of characteristics matrix.
Q. 5 Write definition of interpolation.
Q. 6 Write formula of Newton's backward difference inter polatron.
Q. 7 Write formula for simpson's three eight rule.
Q. 8 Write formula for Trape Zoidal Rule.
Q. 9 By using usepicard's method, find first approximation of when
given that
Q. 10 Write formuls of approximate in Euler's method.

Section - 'B'

Answer the following short-answer-type questions with word limit 150-200 :
(3 5=15)
Q. 1 Using bisection method, find real root of

OR
Find the equation whose roots are
Q. 2 Solve the following system by Gauss elimination method.

$$
6 x_{1}+3 x_{2}+2 x_{3}=6
$$

and
Q. 4 Given that $\mathrm{y}=\log \mathrm{x}$ and

x	4.0	4.2	4.4	4.6	4.8	5.0	5.2

y 1.38631 .43511 .48161 .52611 .56361 .60941 .6487

Evalute
(a) Simpson's $\frac{3}{8}$ Rule
(b) Waddle's Rule.

OR

To show that

OR
Use Runge-Kutta method to approximate the value of y when
given that and

OR

Determine the eigen values of the matrix.
Q. 3 Given
$\operatorname{Sin} 50^{\circ}=0.7660, \operatorname{Sin} 55^{\circ}=0.8192$,
$\operatorname{Sin} 60^{\circ}=0.3660$, find out $\operatorname{Sin} 52^{\circ}$, by using any method of interpolation.

OR
Using Lagrange's interpolation formula, find out the value of y for from the following table.

$:$		7	8	9	10
$:$	3	1	1	9	

Q. 4 Evalute
by Trapezoidal rule.

OR

Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using simpson's
Q. 5 Given
with the initial condition that when

Compute correct to four decimal by using
Taylor's series method.

OR

Apply Euler's method, solve for Y at $x=0.6$ from

$$
y(0)=0 \text { taking }
$$

Q. 3 Given
$\operatorname{Sin} 50^{\circ}=0.7660, \operatorname{Sin} 55^{\circ}=0.8192$,
$\operatorname{Sin} 60^{\circ}=0.3660$, find out $\operatorname{Sin} 52^{\circ}$, by using any method of interpolation.

OR
Using Lagrange's interpolation formula, find out the value of y for from the following table

by Trapezoidal rule.

OR
Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using simpson's.
Q. 5 Given with the initial condition that when . Compute correct to four decimal by using Taylor's series method.

OR

Apply Euler's method, solve for Y at $x=0.6$ from

$$
y(0)=0 \text { taking }
$$

Section - 'C'

Answer the following long-answer-type questions with word limit 300-350 :
(5 5=25)
Q. 1 Find the real root of the equation using RegulaFulsi method.

OR

Evaluate to to four places of decimal by using Newton Raphson method.
Q. 2 Using Cayley Hamilton theorem, find the inverse of the matrix.

OR

Apply Gauss-Jordan method and solve the system of equations
Q. 3 By Newton's backward interpolation formula, the population of a country in decenial censuses were as under. Estimate the population for year 1925.

year x	$:$	1891	1901	1911	1921	1931
Population y : (in thousands)	46	66	81	93	101	

OR

By means of Newton's divided difference formula, find the value of from the following table.

x	$:$	4	5	7	10	11	13
	$:$	48	100	294	900	1210	2028

Section - 'C'

Answer the following long-answer-type questions with word limit 300-350 :
(5 5=25)
Q. 1 Find the real root of the equation using RegulaFulsi method.

OR

Evaluate to to four places of decimal by using Newton Raphson method.
Q. 2 Using Cayley Hamilton theorem, find the inverse of the matrix.


```
\(A=\begin{array}{ccc}2 & -3 & 0\end{array}\)
OR
\(\begin{array}{lll}1 & 1 & \text { Apply Gauss-Jordan method and solve the system of equations }\end{array}\)
```

Q. 3 By Newton's backward interpolation formula, the population of a country in decenial censuses were as under. Estimate the population for year 1925.

| year x : | 1891 | 1901 | 1911 | 1921 | 1931 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Population y : | 46 | 66 | 81 | 93 | 101 |
| (in thousands) | | | | | |

OR

By means of Newton's divided difference formula, find the value of from the following table.

x	$:$	4	5	7	10	11	13
	$:$	48	100	294	900	1210	2028

