\qquad

Obtain Fourier sine series of the following function:
where a is a constant.
Q. 5 Show that the following functions
, satisfy the Laplace equation :
(i) $u=x^{3}-3 x y^{2}$
(ii) $u=\frac{x}{\left(x^{2}+y^{2}\right)}$

OR
Prove that $u=a / r+b$ is a solution of \quad in the form of r where and a and b are constants.

Code No. : C-392

Annual Examination - 2018

> BCA - III
> BCA - 301

CALCULUS, DIFFERENTIAL EQUATION AND COMPUTER ARCHITECTURE

> Paper - II

DIFFERENTIAL EQUATION AND FOURIER SERIES

Max.Marks: 50
Time: 3 Hrs.
Min.Marks: 20
 compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions in one or two sentences :
$(1 \times 10=10)$
Q. $1 \quad$ What is the degree of differential equation
?
Q. 2 What is the integrating factor of linear differential equation
$x \frac{d y}{d x}-2 y=x^{2}$?
Q. 3 What is the differential equation of the system of circles touching the y-axis at the origin?
P.T.O.
Q. 4 What is the complementary function of given differential equation ?
Q. 5 Obtain the partial differential equation by eliminating the arbitrary functions for u :
Q. 6 Define full Range Fourier series.
Q. 7 Define Periodic functions.
Q. 8 Define Orthogonal Trajectories.
Q. 9 Write the statement of term by term differentation of Fourier series.
Q. 10 Define Harmonic function.

Section - 'B'

Solve the following questions:
(3 $5=15$)
Q. 1 Find the differential equation by the family of curves where c_{1} and c_{2} are arbitrary constants.

OR
Solve the Differential equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$
Q. 2 Find the equation of the curve through the origin which satisfies the differential equation $\frac{d y}{d x}=(x-y)^{2}$

OR

Solve : $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-4 y=0$
Q. 3 Find the partial differential equation by eliminating a and b from the relation

OR
Find the complete and general solution :
Q. 4 Find the Fourier coefficients a_{0} and a_{n} of the function in

OR

Explain Half Range Fourier Series.
Q. 5 Explain convergence on Fourier Series.

OR
Explain operations of Fourier Series.

Section - 'C'

Solve the following questions :
Q. 1 Solve :

OR

Q. 2 Find the orthogonal trajectories of the family of curves $y=a x^{2}$

OR

Solve : $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+9 y=40 \sin 5 x$
Q. 3 Solve : $(y+z) p+(z+x) q=x+y$

OR
Find the complete and singular solution
Q. 4 Find the Fourier series of the function $\mathrm{f}(x)=x^{2}$ in

Hence deduce that
P.T.O.

