Q. 2 Find the radius of curvature at the point (r, \quad) to the curve $\mathrm{r}^{\mathrm{n}}=$ $\mathrm{a}^{\mathrm{n}} \sin \mathrm{n}$.
\qquad

OR

Find the intervals for which the following curves are concave upwards or downwards:
Q. 3 If $u=x+y-z, v=x-y+z$,

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=0
$$

OR

If $u=x f(x+y)+y \Phi(x+y)$, then prove that
then show that
Q. 4 Evaluate $\int \frac{2 x+5}{\sqrt{x^{2}+3 x+1}} d x$.

OR

Prove that $\int_{0}^{\pi / 4} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$.
Q. 5 When the region of integration R is the triangle bounded by $y=0, \quad y=x$ and $x=1$, show that.

$$
\iint_{R} \sqrt{4 x^{2}-y^{2}} \cdot d x d y=\frac{1}{3}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)
$$

OR

Trace the curve $\mathrm{ay}^{2}=x^{2}(\mathrm{a}-x)$ and show that area of its loop is $\frac{8 a^{2}}{15}$.

Code No. : C-292
Annual Examination - 2018

BCA - Part II

$$
\text { BCA - } 201
$$

THEORETICAL FOUNDATION OF COMPUTER SCIENCE

Paper - II

DIFFERENTIATION AND INTEGRATION

Max.Marks: 50
$\bar{\partial} x^{2}$: Stion 'A', containing 10 very short-answer-type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions: $(\mathbf{1} \times \mathbf{1 0}=\mathbf{1 0})$
Q. 1 Write the $\mathrm{n}^{\text {th }}$ derivative of
Q. 2 Write the statement of Maclaurin's theorem.
Q. 3 Find the asymptotes parallel to x -axis to the curve
Q. 4 Show that the curve $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ is concave upwards everywhere.
Q. 5 If $f(x, y)=2 x^{2}-x y+2 y^{2}$, find fy $(1,2)$.
Q. 6 Find the directional detivative of at the point $(1,1,1)$ in the directions : $=\mathrm{i}$.
Q. 7 Find the value of $x \mathrm{dx}$.
Q. 8 Evaluate
Q. 9 Evaluate $\int_{0}^{\pi / 2} \int_{0}^{a \cos \theta} r \sin \theta d \theta d r$
Q. 10 Evaluate $\int_{0}^{1}(x+y) d x d y$.

Section - 'B'

Answer the following questions:
(3 $5=15$)
Q. 1 Verify Lagrange's mean value theorem for the function in the internal $[2,4]$.

OR
If $\sin x$, then prove that $\frac{d^{4} y}{d x^{4}}+4 y=0$.
Q. 2 Find all the asymptotes of the curve

OR

Prove that the radius of curvature of the point (x, y) of the catenary is

OR

Find the directional derivative of in the direction of the vector $3 i-4 j+2 k$ at the point $(2,-1,3)$.
Q. 4 Evaluate

OR

Find the value of $\int_{0}^{\pi / 2} \sin 2 x \log (\tan x) d_{n}$
Q. 5 Evaluate
and between the x -axis, the ordinate $x=2 \mathrm{a}$ and the latus-rectum.

Section - 'C'

Answer the following questions :
Q. $1 \quad$ If $\mathrm{y}=e \tan ^{-1} x$ then prove that

OR

If
then find the value of θ
when

