(4)

Code No.: C-292

Find the radius of curvature at the point (r,) to the curve $r^n =$ 0.2 $a^n \sin n$.

OR

Find the intervals for which the following curves are concave upwards or downwards:

Q.3 If u = x+y-z, v = x-y+z,

then show that

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} = 0$$

OR

If $u = xf(x + y) + y\Phi(x + y)$, then prove that

Q.4 Evaluate $\int \frac{2x+5}{\sqrt{x^2+3x+1}} dx$.

OR

Prove that $\int_0^{\pi/4} \log (1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$.

Q.5 When the region of integration R is the triangle bounded by y = 0, y = x and x = 1, show that.

$$\iint_{R} \sqrt{4x^{2} - y^{2}} \cdot dx \, dy = \frac{1}{3} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2} \right)$$

Trace the curve $ay^2 = x^2$ (a-x) and show that area of its loop is

Roll No.....

Total No. of Sections : 03 Total No. of Printed Pages: 04

Code No. : C-292

Annual Examination - 2018

BCA - Part II

BCA - 201

THEORETICAL FOUNDATION OF **COMPUTER SCIENCE**

Paper - II

DIFFERENTIATION AND INTEGRATION

Max.Marks: 50

Min.Marks: 20

 $\sqrt{24}$ x $\sqrt{24}$ $\sqrt{$ Note: Section 'A', containing 10 very short-answer-type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions: $(1 \times 10 = 10)$

- Write the nth derivative of **Q.1**
- Write the statement of Maclaurin's theorem. Q.2
- Q.3 Find the asymptotes parallel to x-axis to the curve
- 0.4 Show that the curve $y = e^x$ is concave upwards everywhere. P.T.O.

2)

Code No.: C-292

(3)

Code No.: C-292

- Q.5 If $f(x,y) = 2x^2-xy+2y^2$, find fy (1, 2).
- Q.6 Find the directional detivative of at the point (1,1,1) in the directions : = i.
- Q.7 Find the value of x dx.
- Q.8 Evaluate .
- Q.9 Evaluate $\int_0^{\pi/2} \int_0^{a\cos\theta} r \sin\theta d\theta dr$
- Q.10 Evaluate $\int_0^1 (x+y) dxdy$.

Section - 'B'

Answer the following questions: (3 5=15)

Q.1 Verify Lagrange's mean value theorem for the function in the internal [2,4].

OR

If $\sin x$, then prove that $\frac{d^4y}{dx^4} + 4y = 0$.

Q.2 Find all the asymptotes of the curve

OR

Prove that the radius of curvature of the point (x,y) of the catenary is

OR

Find the directional derivative of in the direction of the vector 3i-4j+2k at the point (2,-1,3).

Q.4 Evaluate

OR

Find the value of $\int_0^{\pi/2} \sin 2x \log (\tan x) d_n$

Q.5 Evaluate

 $y_n = 0$ The line the line of the position of the parabola $y^2 = 4ax$ included between the x-axis, the ordinate x = 2a and the latus-rectum.

Section - 'C'

Answer the following questions: $(5 \times 5 = 25)$

Q.1 If $y = e \tan^{-1} x$ then prove that

OR

If then find the value of θ

when

Q.3 If then prove that

P.T.O.