Q. 3 By means of Newton's divided difference formula, find the value of $f(8)$ from the following table:

x	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	48	100	294	900	1210	2028

OR
Find the cubic polynomial which takes the following values:

x	0	1	2	3
y	1	2	1	10

Q. 4 Find the value of using Simpson's three eight rule, from
following table :

x	0	1	2	3	4	5	6
y	0.146	0.161	0.176	0.190	0.204	0.217	0.230

OR

Use trapezoidal rule to evaluate considering five subinterval.
Q. 5 Using Taylor's series method, solve $y^{\prime}=1-2 x y$ given that $y(0)=0$.

OR

Use Runge Kutta method to solve $\mathrm{y}^{\prime}=\mathrm{xy}$ for $\mathrm{x}=1.4$, initially $\mathrm{x}=1, \mathrm{y}=2($ take $\mathrm{h}=0.2)$

$$
---X---
$$

Code No. : C-291

Annual Examination - 2018

BCA - II

(BCA - 201)
THEORETICAL FOUNDATION
OF COMPUTER SCIENCE
Paper - I
NUMERICAL ANALYSIS
Max.Marks: 50
Time : 3 Hrs.
Min.Marks: 20
Hote : Section 'A', containing 10 very short-answer-type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first.

Section - 'A'

Answer the following very short-answer-type questions in one or two sentences:
$(1 \times 10=10)$
Q. 1 Write difference between Algebraic Equation and Transcendental Equation.
Q. 2 Write definition of zero of an equation.
Q. 3 Write statement of Intermediate value theorem.
Q. 4 Find the determinant of the matrix $\mathrm{A}=$
Q. 5 Write formula of Newton Raphson method.
Q. $6 \quad$ Write formula of Simpson's One Third rule.
Q. 7 Write formula for Trapezoidal rule.
Q. 8 Write Taylor's series.
Q. 9 Write formula of nth approximation in Picard's method.
Q. 10 Runge Kutta method is to solve which equation?

Section - 'B'

Solve the following :

(3 5=15)
Q. 1 Find the real root of the equation $x^{4}-x-9=0$ by Newton Raphson method, correct to three decimal places.

OR
Find the root of the equation $x^{3}-x-4=0$ using the bisection method.
Q. 2 Determine rank of following matrix :

OR
Find the eigen values and eigen vectors of the matrix :
Q. 3 Evaluate:

OR

Given the values

x	5	7	11	13	17
$\mathrm{~F}(\mathrm{x})$	150	392	1452	2366	5202

Q. 4 Find the value of $\int_{1}^{2} \frac{d x}{x}$ by Simpson's rule.

OR

A river is 80 meter wide. The depth d (in meter) of the river at distance x from the bank is given by the following table :

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

Find approximately the area of cross section of the river.
Q. 5 Use Picard's method to solve $=1+x y$, with $x_{0}=2, y_{0}=0$.

OR

Solve $y^{\prime}=x+y, y(0)=1$ by Taylor's series method.

27
-asolve the following :
24 se Newton's method to find a root of the equation
$x^{3}-3 x-5=0$.

OR

Find the cube root of 2 approximately by Newton Raphosn method correct to five decimal places.
Q. 2 Apply Gauss - Jordan method and solve the system of equations: $10 \mathrm{x}+\mathrm{y}+\mathrm{z}=12,2 \mathrm{x}+10 \mathrm{y}+\mathrm{z}=13, \mathrm{x}+\mathrm{y}+5 \mathrm{z}=7$.

OR

Using Cayley - Hamilton theorem, find the inverse of the
matrix.

Evaluate $\mathrm{F}(\mathrm{q})$ using Lagrange's formula.

