Code No. : BC-291

Roll No.

Total No. of Printed Pages : 5

Code No. : BC-291

Online Annual Examination, 2022

B.C.A. Part II MATHEMATICS

Paper I

(Calculus and Differential Equations)
Time: Three Hours]
Note: Section ' A ', containing 10 very short answer type questions, is compulsory. Section ' B ' consists of short answer type questions and Section ' C ' consists of long answer type questions. Section ' A ' has to be solved first.

Section 'A'

Answer the following very short answer type questions in one or two sentences. $\quad \mathbf{1} \times \mathbf{1 0}=\mathbf{1 0}$

1. Define continuity from right.
2. Define discontinuity of the second kind.
3. Find the differential coefficient of $\sin x^{2}$.
4. Define local minima.
5. Write the value of $\int \frac{1}{1+x^{2}} d x$.
6. Write the value of $\int \frac{x^{n}}{4} d x$.
7. Write the value of $\int_{0}^{\pi / 4} \tan ^{2} x d x$.
8. Write the value of $\int_{0}^{1} \frac{\left(\tan ^{-1} x\right)^{2}}{1+x^{2}} d x$.
9. Write the degree and order of
$x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+y^{2}\left(\frac{d y}{d x}\right)^{4}+y^{4}=0$.
10. Define general solution of a differential equation.

Section ' B '

Answer the following short answer type questions with word limit 150-200.

1. State and prove Boundedness theorem.

Or
Find the value of $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{2}$.

Code No. : BC-291

2. Find the differential coefficient of $\tan ^{-1} \frac{x}{\sqrt{1+x^{2}}}$.

Or

Differentiate x^{x} with respect to x.
3. Evaluate : $\int x^{2} e^{-x} d x$.

Or

Evaluate : $\int \frac{1}{x^{2}-x-6} d x$.
4. Find the value of $\int_{0}^{\pi / 3} \frac{\cos x}{3+4 \sin x} d x$.

Or

Evaluate : $\int_{0}^{\pi} \cos ^{6} x d x$.
5. Solve : $\left(1-x^{2}\right)(1-y) d x=x y(1+y) d y$.

Or
Form the differential equation of $A x^{2}+B y^{2}=1$.

Code No. : BC-291

Section ' \mathbf{C} '

Answer the following long answer type questions with word limit 300-350.
$\mathbf{1 0} \times \mathbf{5}=\mathbf{5 0}$

1. Verify that $\lim _{x \rightarrow-1}\left(2 x^{2}+3\right)=5$.

Or
Test the continuity of $f(x)=\left\{\begin{array}{cl}2 x+3 & \text { if } x<1 \\ 2 & \text { if } x=1 \\ 7-2 x & \text { if } x>1\end{array}\right.$
at $x=1$.
2. If $y=\tan ^{-1} \frac{2 t}{1-t^{2}}$ and $x=\sin ^{-1} \frac{2 t}{1+t^{2}}$, then prove that $\frac{d y}{d x}=1$.

Or
Investigate for what value of $x, 5 x^{6}-18 x^{5}+15 x^{4}-10$ is a maximum or minimum.
3. Integrate : $\int \frac{d x}{\sqrt{1+\sin x}}$

Code No. : BC-291

Or
Integrate : $\int \log \left(1+x^{2}\right) d x$.
4. Integrate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.

Or
Integrate $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$.
5. Solve $(x+y)(d x-d y)=d x+d y$.

Or
Solve $(y-x) \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$.
$\square \square \square \square \square \mathrm{d} \square \square \square \square \square$

