Code No. : B01/201

First Semester Examination, January 2022

M.Sc. PHYSICS

Paper - II

CLASSICAL MECHANICS

Time: 3 Hrs.

Max. Marks : 80

- Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.
- Part C (Short answer type) of each question will be answered in 200-250 words.
- Part D (Long answer type) of each question should be answered within the word limit 400-450.

Unit - I

Q.1 A. Def	ine the cons	ervation law	for linear	momentum.	(2)

- Q.1 B. Define the virtual displacement. (2)
- Q.1 C. What do you mean by Applied and constraint forces? (4)

OR

What are constraints? How they are classified?

Q.1 D. Define generalised coordinates and obtain the expression for generalised acceleration, generalised force and generalised potential.
(12)

P.T.O.

OR

Prove the law of conservation of linear momentum, angular momentum and energy for a system of interacting particles.

Unit - II

- Q.2 A. Define frame of reference. (2)
- Q.2 B. What do you mean by mass-variation? (2)
- Q.2 C. If the half-time of an elementary particle moving with speed 0.9c in the lab. Frame in 5×10^{8} s then find proper half-time. (4)

OR

Two electron moved towards each other, the speed of each being 0.9c in a Galilean frame of reference. What is their speed relative to each other?

Q.2 D. Derive Lorentz's transformation equations in the form of four vectors and write its applications. (12)

OR

Starting from the transformation laws for momentum and energy. Show that $(p^2 - E^2/c^2)$ is invariant quantity.

Unit - III

- Q.3 A. Define the coriolis force. (2)
- Q.3 B. Explain the radial motion. (2)

An evaluation version of <u>novaPDF</u> was used to create this PDF file. Purchase a license to generate PDF files without this notice. Q.3 C. How the two body problem can be converted into single body problem? (4)

(3)

OR

Explain the astronomical applications of the coriolis force.

Q.3 D. State and prove Kepler's first law of planetary motion. (12)

OR

Explain Rotating frames and integral force.

Unit - IV

Q.4 A. Define the Hamiltonian.	(2))
--------------------------------	-----	---

- Q.4 B. Explain phase space and motion of the system. (2)
- Q.4 C. Discuss one dimensional harmonic oscillator problem, using Hamilton Jacobi method. (4)

OR

Explain the Poisson theorem.

Q.4 D. State and discuss the principle of least action. (12)

OR

Define the Poisson bracket of two dynamical variables. Show that for any three dynamical variables u, v, w the Jocobi identity.

[u,(v,w)]+[v,(w,u)]+[w,(u,v)]=0 is satisfied.

----X----