Code No. : A.B.C-391

Annual Online Examination 2021

Code No. : A.B.C-391
B.C.A. Part III

MATHS
BCA-301
Paper I
[Calculus and Geometry]
$\frac{\text { Time }}{\text { Note }}: \frac{\text { Three }}{\text { Section }} \frac{\text { Hours }]}{\text { ' } A \text { ' containing }} 10$ very short $\frac{[\text { Maximum Marks }}{\text { answer }} \frac{50}{\text { type }}$ questions, is compulsory. Section ' B ' consists of short answer type questions and Section ' C ' consists of long answer type questions. Section ' A ' has to be solved first.

Section ' A '

Answer the following Very Short Answer Type Questions in one or two sentences : $\quad \mathbf{1} \times \mathbf{1 0}=\mathbf{1 0}$

1. Define upper and lower Riemann sum.
2. Write the necessory and sufficient condition for R-integrability.
3. Write the necessary and sufficient conditions for the existence of maxima or minima at a point.
4. Define local maximum.
5. Define improper integral.
6. Write Abel's test for the convergence of integral of a product.
7. Write equation of a cone whose vertex is at origin.
8. Define right circular cylinder.
9. Find Cartesian equation of $r=a$.
10. Write the equation of the directrix of the conic

$$
\frac{l}{r}=1+e \cos \theta
$$

Section 'B'

Answer the following Short Answer Type Questions in about 150-200 words :
$3 \times 5=15$

1. Let $f:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

Then prove that $f \notin \mathbb{R}[0,1]$.
Or
Prove that : L $(f) \leq \mathrm{U}(f)$.
2. Find the critical points of $z=x^{3}-y^{2}-3 x$.

Or
Find the minimum distance from the origin to the plane $x+2 y-2 z=12$.

Code No. : A.B.C-391

3. Test the convergence of $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$.

Or
Test the convergence of the integral $\int_{a}^{\infty} \frac{\sin x}{\sqrt{x}} d x$ where $a>0$.
4. Find the equation of the cone whose vertex is $(0,0,3)$ and base is the circle $x^{2}+y^{2}=4, z=0$.
or
Find the equation of a cone whose vertex is at origin and direction cosines of its generators satisfying the relation $4 l^{2}+7 m^{2}-8 n^{2}=0$.
5. Find the distance between the points (a, α) and $(-a, \pi+\alpha)$. What do you conclude from the results ?

Or

In a conic, prove that the semi-latus rectum is the harmonic mean between the segment of a focal chord.

Section ' C '

Answer the following Long Answer Type Questions in about 300-350 words :
$5 \times 5=25$

Code No. : A.B.C-391

1. If f is define in $[0,1]$ by $f(x)=x, \forall x \in[0,1]$, then prove that $f \in \mathrm{R}[0,1]$ and $\int_{0}^{1} x d x=\frac{1}{2}$.

Or

State and prove the fundamental theorem of Integral Calculus.
2. Find minimum value of $u=x^{2}+y^{2}+z^{2}$ having given $a x+b y+c=p$.

Or

Prove that of all rectangular parallelopiped of the same volume, the cube has the least surface.
3. Examine the convergence of $\int_{0}^{1} \frac{d x}{\sqrt{x}(1-x)^{1 / 3}}$.

Or
Discuss the convergence of $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$.
4. Find the equation of the right circular cone whose vertex is the origin, axis is z-axis and the semi-vertical angle is α.

Or

Find the equation of right circular cylinder whose guiding circle is $x^{2}+y^{2}+z^{2}=9, x-y+z=3$.

Code No. : A.B.C-391

5. Find the condition that the line $l / r=\mathrm{A} \cos \theta+\mathrm{B} \sin \theta$ may be a tangent to the conic $l / r=1+e \cos \theta$.

Or
Find the equation of the chord of the conic $l / r=1+$ $e \cos \theta$, which is obtained by joining the points whose vectorial angle are 30° and 90°.
$\square \square \square \square \square$ d $\square \square \square \square$

