(4) Code No. : B-411(A)	0	Ooll NoTotal No. of Section: 03Total No. of Printed Pages : 04
 Q.3 The length of the day was 12 hours on March 19th, 14 hours on April 18th and 15 hours 40 minutes on May 18th. Estimate-a) The length of the day on May 3rd. b) The mean length of the day during the period, March 19th to May 18th. OR By means of Newton's divided difference formula, find the values of f(8), f(9) and f(15) from the following table : x : 4 5 7 10 11 13 f(x): : 48 100 294 900 1210 2028 	00000000	Code No. : B-411(A) Annual Examination - 2017 BCA-II BCA-201 THEORETICAL FOUNDATION OF COMPUTER SCIENCE Paper - I NUMERICAL ANALYSIS
0.4 Find the surface $f^1 = x^2$		Time : 3 Hrs. Min Marks : 30 Min Marks : 20
rule, by dividing the range into four equal parts. Also find the error. OR Given that $y = \log x$ and x: 4.0 4.2 4.4 4.6 4.8 5.0 5.2 y: 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487 Evaluate $I = \int_{4}^{5.2} \log x dx$ by Weddle's rule. Also compare it with exact value. Q.5 Use Taylor's series method to find y for $x = 0.1$ correct to four places of decimal, if satisfies $\frac{dy}{dx} = x - y^2$ with $y_0 = 1, x_0 = 0$ OR Use Runge-Kutta method to find y when $x = 1.2$ in steps of 0.1, given that $\frac{dy}{dx} = x^2 + y^2, y(1) = 1.5$.	0 0 0 0 0 0 0 0 0 0 0 0	compulsory. Section 'B' consists of short answer type questions, is compulsory. Section 'B' consists of short answer type questions and Section 'C' consists of long answer type questions. Section 'A' has to be solved first. (Section-'A') (Very short answer type questions. Answer in one or two lines.) (1x10=10) Write definition of polynomial. Write definition of root of an eqation. Write definition of characteristic value problem. Sime the eigen value of matrix $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$. $\begin{bmatrix} 2 & 3 \\ 5 & -4 \end{bmatrix}$ Write Newton's backward difference in terpolation formula. Write one assumptions for interpolation. Write formula of simpson's three eighth rule. Write formula of weddle's rule. Use Picard's method for first approximation y when $x = 0.2$
X	2	given that $y = 1$ when $x = 0$ a $\frac{dy}{dx} = x - y$.
	2	2.10 Write formula for Euler's method.
	5	P.T.O.

		Y	
	(2) Code No. : B-411(A)	C	(3) Code No. : B-411(A)
			OR
	(Section-'B')		f ⁴ , the low Simpson's ¹ / rule using the data
	(Short answer type questions with word limit 150-200)	0 0	\bigcirc Evaluate $\int_0^\infty e^{-dx}$, by Simpson's $/3$ rule, using
	(3x5=15)	0	$e = 2.72, e^2 = 7.39, e^3 = 20.09, e^4 = 54.60$ and compare it with the
0.1	r_{1} = 1 the equation whose roots are $-3 - 1, \frac{5}{2}$.		actual value.
Q.1	Find the equation whose roots are s, s, 3		Q.5 Using Taylor's series find the solution of the differential
	OR	0 0	equation $xy^1 = x - y$, $y(2) = 2$ at $x = 2.1$ correct to five places
D	Find a real root of the equation $f(x) = x^3 - 4x - 9 = 0$, using	0 0	of decimal.
1000	bisection method in four stages.	0 0	OR
Q.2	Find the characteristics polynomial, characteristic equation and		Apply Euler's method solve for y at x=0.0 from
•	eigen values of the following matrix .		$\frac{dy}{dt} = 1 - 2xy$, $y(0) = 0$ take $h = 0.2$.
0	$\begin{bmatrix} 2 & -1 & 1 \end{bmatrix}$	0 0	+ dx (Section 10)
	$A = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$	0 0	(Section- C)
		0 0	(Long answer type questions with word mine $5x5=25$)
	OR	0 0	- Constant of decimal by using Newton's-
	Apply Gauss Jordan method to solve the equations :		Q.1 Evaluate $\sqrt{12}$ to four places of decimal by ability
	x + y + z = 9	e e	O Raphson method.
	2x - 3y + 4z = 13	0 0	By Regula-Falsi method, find a real root of the equation
	3x + 4y + 5z = 40	0 0	$r^{3} - 2r - 5 = 0$
0.3	Find the first term of the series whose second and subsequent	0 0	$\begin{bmatrix} x & -2x & 5 & -0 \end{bmatrix}$
2.5	terms are $8, 3, 0, -1, 0$.		A = 2 - 3 = 0
	OR	e e	Q.2 Find the characteristic equation of the matrix $\frac{1}{1}$
~	Find a unique polynomial of degree 2 or less, such that	0 0	
0	f(0) = 1, $f(1) = 3$, $f(3) = 55$ using Newton's divided	0 0	and verify that it is satisfied by A and hence obtain A^{-1} .
	difference interpolation formula.	0 0	OR
	$f^6 dx$. The solution f^6		Apply Gauss-Jordan method to find the inverse of the management
Q.4	Evaluate $\int_0^{1} \frac{1+x^2}{1+x^2}$ by using Trapezoidal fulle.		266
		0 0	$A = \begin{bmatrix} 2 & 8 & 6 \end{bmatrix}$
		0 0	2 6 8 P.T.O.
		0 0	