Roll No.

Total No. of Section : 4 Total No. of Printed Pages : 5

Code No. : 01/403

I Semester Examination, 2019-20

M.Sc.

MATHEMATICS

Paper IV

[Complex Analysis]

Time : Three Hours]

[Maximum Marks : 80

Note: Part A and B of each question in each unit consists of Very Short Answer Type Questions which are to be answered in one or two sentences. Part C (Short Answer Type) of each question will be answered in 200-250 words. Part D (Long Answer Type) of each question should be answered within word limit 400-450.

Unit – I

- 1. (A) Write the statement of Cauchy's Goursat theorem. 2
 - (B) Write the value $\int |dz|$ where L is any rectifiable are joining the points $z = \alpha$ and $z = \beta.2$

Code No. : 01/403

(C) If c is a closed contour containing the origin inside it, prove that :

$$\frac{a^n}{n} = \frac{1}{2\pi i} \int_C \frac{e^{az}}{z^{n+1}} dz.$$

Or

If f(z) is analytic for all finite values of z, and is bounded for all values of z, then show that it is a constant function.

(D) Let f(z) be analytic in the region $|z| < \rho$ and $z = re^{i\theta}$ be any point of this region. Then show that

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2) f(Re^{i\phi})}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$

12

4

Or

Prove that :

$$\cosh\left(z+\frac{1}{2}\right) = a_0 + \sum_{n=1}^{\infty} a_n \left(z^n + \frac{1}{z^n}\right)$$

where $a_n = \frac{1}{2\pi} \int_0^{2\pi} \cosh\left(2\cos\theta\right) \cos n\theta \ d\theta$.

- 2. (A) Write the statement of maximum modulus theorem. 2
 - (B) Write the statement of Jordan's inequality. 2[2]

Code No.: 01/403

Or

Let the metric ρ be defined as in $\rho(f,g) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n \frac{\rho_n(f,g)}{1+\rho_n(f,g)}.$

If $\varepsilon > 0$ is given, then show that there is a $\delta > 0$ and a compact set $K \subset G$ such that for $f, g \in \subset (G, \Omega)$

 $\sup \left\{ d\left(f\left(z\right),g\left(z\right):z\in k\right\} <\delta \Rightarrow \rho\left(f,g\right)<\varepsilon.\right.$

(D) To state and prove Montel's theorem. 12

Or

If $|z| \le 1$ and $P \ge 0$, then show that

 $|1 - E_P(z)| \le |z|^{p+1}$.

00000 d00000

5/50

Code No.: 01/403

(C) If f(z) is analytic in a domain |z| < 1 and satisfies the conditions $|f(z)| \le 1, f(0) = 0$, then show that $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

Or

If c is the arc $\theta_1 \le \theta \le \theta_2$ of the circle |z - a| = r and if $\lim_{z \to a} (z - a) f(z) = A$, then show that

$$\lim_{r\to 0} \int_c f(z) \, dz = i \mathcal{A} \, (\theta^2 - \theta_1).$$

(D) If f(z) is analytic within and on a closed contour C except at a finite number of poles and has no zero on C, then show that

$$\frac{1}{2\pi i} \int_{\mathbf{C}} \frac{f'(z)}{f(z)} dz = \mathbf{N} - \mathbf{P}$$

where N is the number of zeros and P the number of poles inside C. 12

Or

Apply the calculus of residues to prove that :

$$\int_0^\infty \frac{\sin \pi x}{x(1-x^2)} \, dx = \pi.$$

Unit – III

3. (A) Define fixed points of a bilinear transformation. 2

[3]

P. T. O.

4

Code No.: 01/403

- (B) Write the statement of sufficient condition for w = f(z) to represent a conformat mapping. 2
- (C) Show that cross ratios are invariant under a bilinear transformation.

Or

Find the fixed points and the normal form of the bilinear transformation

$$\omega = \frac{(2+i)z-2}{z+i}.$$

(D) To find all the bilinear transformations which maps the half plane I $(z) \ge 0$ on to the unit circular disc $|w| \le 1$. 12

Or

Discuss the transformation $\omega = z^2$.

Unit - IV

- 4. (A) Defined locally bounded set.
 - (B) Write the statement of Weierstrass's theorem. 2

2

(C) If $F \subset C(G, \Omega)$ is equicontinuous at each point of G, then show that F is equicontinuous over each compact subset of G. 4