Code No. : 02/201

Second Semester Examination, May 2019

M.Sc. PHYSICS

Paper - II

STATISTICAL MECHANICS

Time: 3 Hrs.

• Part A and B of each question in each unit consist of very short answer type questions which are to be answered in one or two sentences.

Part C (Short answer type) of each question should be answered in 200-250 words.

Part D (Long answer type) of each question should be answered within the word limit 400-450.

Unit - I

- Q.1 A. What is meant by Grand canonical ensemble? (2)
- Q.1 B. Define enthalpy and Gibb's free energy. (2)
- Q.1 C. Derive an expression for entropy and internal energy of perfect gas in microcanonical ensemble. (4)

OR

Obtain the relation between different statistical and thermodynamical quantities.

Q.1 D. Obtain an expression for chemical potential and entropy of perfect gas in grand canonical ensemble. (12)

OR

Define microcanonical ensemble. Use it to calculate the entropy of a perfect gas? Show how the internal energy and equation of state for a perfect gas can be obtained from it.

(2)

μ

Q.2 A. Define phase space. What do you mean by space and	space?
	(2)
Q.2 B. What do you mean by light and strong degeneracy?	(2)
Q.2 C. Explain how the Gibb's paradox has been resolved.	(4)
OR	
Write the basic assumptions of Classical Statistics.	

Q.2 D. Derive Bose-Einstein's distribution law. (12)

OR

What is Fermi gas? Deduce an expression for the energy of a Fermi gas at absolute temperature. Write its significance.

Unit - III

- Q.3 A. Write the Virial equation of state for a classical gas. (2)
- Q.3 B. Draw the diagram of the cluster expansion for N=3. (2)
- Q.3 C. What is phase transition? Explain the phase transition of first and second kind. (4)

OR

Explain the Ising model in one dimension.

Q.3 D. What is Landau's phenomenological theory of phase transition? (12)

OR

What do you mean by cluster? Obtain expression for cluster

expansion for a classical gas.

Unit - IV

(3)

Q.4 A. What are fluctuations? Explain thermodynamic fluctuation.	(2)
Q.4 B. Write the Nernst relation.	(2)
Q.4 C. Derive Fokker-Planck equation.	(4)

OR

Obtain an expression for fluctuation dissipation theorem.

Q.4 D. Write the Langevin's theory of the Brownian motion. (12)

OR

Obtain the Einstein's relation and expression for mobility.

----X----