Roll No.

Code No. : B02-303

Second Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper - III

GENERAL AND ALGEBRAIC TOPOLOGY

Time : Three Hours]

[Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within 200-250 and 400-450 words.

Unit-I

 (A) Define Tychonoff product topology.
(B) Explain distinguish points.
(C) Let T₁ = {φ, {1}, X₁} be a topology on X₁ = {1, 2, 3} and T₂ = {φ, X₂, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}. be a topology on X₂ = {a, b, c, d}. Find a base for the product topology.

Code No. : B02–303

Or

Prove that the product space of two Hausdorff spaces is Hausdorff.

(D) Let (X, T) be the product space of (X_1, T_1) and (X_2, T_2) . Let $\pi_1 : X \to X_1, \pi_2 : X \to X_2$ be the projection maps on the first and second coordinate spaces respectively. Let $f : Y \to X$ be another map. Show that f is continuous iff π_1 of and π_2 of are continuous maps. 12

Or

Prove that the product of completely regular spaces is completely regular.

Unit-II

- **2.** (A) Define Local finiteness. 2
 - (B) Define paracompactness. 2
 - (C) Let $F_i : (X_i, T) \to (Y, V)$ be a continuous onto map $\forall i \in I$. V being largest topology for Y. Prove that the map $g : Y \to Z$ is continuous iff the composition map is continuous. 4

Or

Let X be a regular space with a basis β that is countably locally finite. Then prove that X is normal and every closed set in X is a G_g set in X.

Code No. : B02–303

(D) Let $\{f_i : X \to Y_i \forall i \in I\}$ be a family of continuous functions which distinguishes points from closed sets, then prove that the corresponding evaluation map is an embedding of X into the product space $\Pi_{i \in I} Y_i$. 12

Or

State and prove Urysohn Metrization Theorem.

Unit-III

3.	(A)	Give an	example	of directed	set.	2
----	-----	---------	---------	-------------	------	---

- (B) Define convergence of filters.
- (C) Let (X, T) be a topological space and $Y \subset X$, then show that Y is T open iff no net in X - Y can converge to a point in Y.

Or

Prove that a net in a set X is ultranet iff the filter it generates is an ultrafilter.

(D) Let (X, T) be a topological space and $Y \subset X$. Then prove that a point $x_0 \in X$ is a limit point of Y iff these exists a net in $Y - \{x_0\}$ converges to x_0 . 12

Or

Prove that a filter F on a set X is an ultrafilter iff for any two subsets A, B of X such that $A \cap B \in F$, we have either $A \in F$ or $B \in F$.

[3] P. T. O.

2

Code No. : B02–303 Unit-IV

4.	(A) Explain the fundamental group.	2
	(B) Define convering space.	2

(C) Let $x_0, x_1 \in X$. If these is a path in X from x_0 to x_1 then prove that the groups π_1 (X₁, x_0) and π_1 (X₁, x_1) are isomorphic. 4

Or

Prove that \simeq , \simeq_n is an equivalence relation.

(D) Prove that the operation * is well defined on path homotopy classes and it satisfies associativity, identify and inverse properties.

Or

State and prove that Fundamental Theorem of Algebra.

$\Box \Box \Box \Box \Box \Box d \Box \Box \Box \Box \Box$