Roll No. Total No. of Printed Pages : 5

Code No. : B04-201

Fourth Semester Online Examination, May-June, 2022

M. Sc. PHYSICS

Paper II

COMPUTATIONAL METHODS & PROGRAMMING

Time : Three Hours] [Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450.

Unit-I

- 1. (A) Write Regula-Falsi method.
 - (B) What is inverse of a matrix ?
 - (C) Find a root of the equation $x^3 4x 9 = 0$, using the bisection method correct to three decimal places. 4

Or

Using iteration method, find a root of the equation $x^3 + x^2 - 1 = 0$ correct to four decimal places.

(D) Apply Jacob's iteration method to solve the equations 12

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Or

Using Jacobi's method, determine all the eigen values and eigen vectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

Unit-II

2. (A) Define differences of a polynomial.2(B) What is polynomial Interpolation ?2(C) Evaluate $\Delta^2 \cos 2x$.4

P. T. O.

2

2

[2]

Code No. : B04-201

Or

Using the method of least squares, fit a curve of

the form $y = \frac{x}{a+bx}$ to the following data (3, 7.148), (5, 10.231), (8, 13.509), (12, 16.434).

(D) Using Gauss backward difference formula.

Find y(8) from the following data : 12

x	0	5	10	15	20	25
у	7	11	14	18	24	32

Or

Obtain the cubic spline for the following data :

x	0	1	2	3
y	2	- 6	- 8	2

Unit-III

3. (A) Write Picard's method.

- 2
- (B) Write general linear partial differential equation of the second order in two indepedent variables & also name the different classifications according to their condition.

[3] P. T. O.

Code No. : B04-201

(C) Apply Runge–Kutta method to find approximate value of y for x = 0.2, in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that y = 1 where x = 0. 4

Or

Given
$$\frac{dy}{dx} = x^2 (1+y)$$
 and $y(1) = 1$, $y(1.1) = 1$

1.233, y(1.2) = 1.548, y(1.3) = 1.979 evaluate y(1.4) by Adams-Bashforth method.

(D) Given y'' + xy' + y = 0, y(0) = 1, y'(0) = 0. Obtain y for x = 0, 0.1, 0.2, 0.3 by any method & calculate y(0.4) by using Milne's method. 12

Or

Using modified Euler's method, find and approximate value of y when x = 0.3, given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.

Unit-IV

4.	(A) What is loops ?	2
	(B) What do you mean by logical expression ?	2
	(C) What is flow chart ? Explain its types.	4

Code No. : B04–201

Or

Explain real expression.

(D) Explain executable and non-executable statement.

12

Or

Write a FORTRAN programe to find average height of boys and girls in a class.

 $\square \square \square \square \square \square d \square \square \square \square \square$