Roll No.
Total No. of Printed Pages : 5

Code No. : B04-201

Fourth Semester Online Examination, May-June, 2022

M. Sc. PHYSICS

Paper II

COMPUTATIONAL METHODS \& PROGRAMMING

Time: Three Hours]_ _ _ _ [Maximum Marks: 80
Note : - Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.

- Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450.

Unit-I

1. (A) Write Regula-Falsi method. 2
(B) What is inverse of a matrix ?
(C) Find a root of the equation $x^{3}-4 x-9=0$, using the bisection method correct to three decimal places.

Or
Using iteration method, find a root of the equation $x^{3}+x^{2}-1=0$ correct to four decimal places.
(D) Apply Jacob's iteration method to solve the equations

$$
\begin{aligned}
20 x+y-2 z & =17 \\
3 x+20 y-z & =-18 \\
2 x-3 y+20 z & =25
\end{aligned}
$$

Or
Using Jacobi's method, determine all the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
1 & \sqrt{2} & 2 \\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}\right]
$$

Unit-II
2. (A) Define differences of a polynomial.
(B) What is polynomial Interpolation?
(C) Evaluate $\Delta^{2} \cos 2 x$.

Code No. : B04-201

Or
Using the method of least squares, fit a curve of the form $y=\frac{x}{a+b x}$ to the following data (3, $7.148),(5,10.231),(8,13.509),(12,16.434)$.
(D) Using Gauss backward difference formula.

Find $y(8)$ from the following data :

x	0	5	10	15	20	25
y	7	11	14	18	24	32

Or
Obtain the cubic spline for the following data :

x	0	1	2	3
y	2	-6	-8	2

Unit-III

3. (A) Write Picard's method.
(B) Write general linear partial differential equation of the second order in two indepedent variables \& also name the different classifications according to their condition.

Code No. : B04-201

(C) Apply Runge-Kutta method to find approximate value of y for $x=0.2$, in steps of 0.1 , if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ where $x=0 . \quad 4$

Or
Given $\frac{d y}{d x}=x^{2}(1+y)$ and $y(1)=1, y(1.1)=$ 1.233, $y(1.2)=1.548, y(1.3)=1.979$ evaluate $y(1.4)$ by Adams-Bashforth method.
(D) Given $y^{\prime \prime}+x y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=0$. Obtain y for $x=0,0 \cdot 1,0 \cdot 2,0 \cdot 3$ by any method \& calculate $y(0.4)$ by using Milne's method. 12

Or

Using modified Euler's method, find and approximate value of y when $x=0 \cdot 3$, given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.

Unit-IV

4. (A) What is loops ?
(B) What do you mean by logical expression?
(C) What is flow chart ? Explain its types.

Code No．：B04－201
Or
Explain real expression．
（D）Explain executable and non－executable statement．
12
Or
Write a FORTRAN programe to find average height of boys and girls in a class．

ロロロロロdロロロロロ

