Roll No.
Total No. of Printed Pages : 5

Code No. : B04-203

Fourth Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper II

MECHANICS

Time : Three Hours] [Maximum Marks : 80
Note : - Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.

- Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450.

Unit-I

1. (A) Define constrained motion with one example only.
(B) Write the transformation equation for a system of N particles, from cartesian coordinate to generalized coordinates.

2
(C) Derive the Hamilton's cannonical equations of motion for the given position coordinates q_{j}, momenta p_{j} and time t.

Or
Obtain the lagrange's equation of motion of second kind for the conservative system.
(D) Derive the Routh's equation of motion from Lagrangian $\mathrm{L}\left(q_{1}, \ldots . q_{n}, \dot{q}_{1}, \ldots . \dot{q}_{n}, t\right)$.

Or
State and prove Donkin's theorem.

Unit-II

2. (A) Define Poisson Bracket.
(B) Define Geodesic.
(C) Show that minimum surface of revolution is generated by a catenary.

Or
Show that the path of shortest distance between two points on a plane is straight line.
(D) State and prove principle of least action.

Or

Show that the poincare-cartan integral is invariant.

Code No. : B04-203
Unit-III
3. (A) State Whittaker's equation.
(B) State Lee-Hwa Chung's theorem.
(C) Show that the transformation :

$$
\begin{aligned}
& \mathrm{Q}=\sqrt{2 q} e^{a} \cos p \\
& \mathrm{P}=\sqrt{2 q} e^{-a} \sin p
\end{aligned}
$$

is a canonical transformation.

Or

For a certain canonical transformation, it is given that,
and $\quad \mathrm{F}=\frac{1}{2}\left(q^{2}+p^{2}\right) \tan ^{-1} \frac{q}{p}+\frac{1}{2} q p$,
where $\quad \mathrm{P}=-\frac{\partial \mathrm{F}}{\partial \mathrm{Q}}$.
Then find the value of $\mathrm{P}(q, p)$.
(D) Show that the Lagrange's bracket is invarient under the canonical transformation. Further show that $\left\{q_{i}, q_{j}\right\}=0,\left\{p_{i}, p_{j}\right\}=0$ and $\left\{q_{i}, p_{j}\right\}=\delta_{i j}$ for Lagrange Bracket.

Code No. : B04-203
Or
Prove that $\sum_{l=1}^{2 n}\left\{u_{l}, u_{i}\right\} \cdot\left[u_{l}, u_{j}\right]=\delta_{i j}$ where $\left\{u_{l}, u_{i}\right\}$ is Lagrange and $\left[u_{l}, u_{i}\right]$ is Poisson Bracket. (It is the relation between Lagrange and Poisson Brackets.) Here $\delta_{i j}$ denotes the Kronecker delta.

Unit-IV

4. (A) State the 'Gauss theorem' for total normal attraction.
(B) State the 'Laplace theorem' for the potential of an attracting mass.
(C) Show that the family of right circular cones $\frac{x^{2}+y^{2}}{z^{2}}=$ constant, is a possible family of equipotential surfaces.

Or

Find the work done by mutual attraction of the particles of a self-attracting system, when particles are brought from an infinite distance from oneanother to the position they occupy in the given system.

Code No. : B04-203

(D) Find the attraction of a "uniform circular disc" (plate) of radius a and small thickness k, at a point on the axis of the disc at a distance p from its centre.12

Or
Find the attraction of a thin uniform $\operatorname{rod} \mathrm{AB}$ at an external point P.

