Roll No. Total No. of Printed Pages : 4

Code No. : B02-203

Second Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper II

REAL ANALYSIS

Time : Three Hours]

[Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450 words.

Unit-I

۱.	(A)	Write statement of the fundamental theorem	of
		calculus.	2
	(B)	Write definition of rectiable curve.	2
	(C)	Evaluate $\int_0^3 x d([x] - x)$.	4

Or

Let f be a constant function on [a, b] defined by

Code No. : B02–203

 $f(x) = k \text{ and } \alpha \text{ is monotonically increasing}$ function on [a, b]. Then prove that $\int_a^b f \, d\alpha$ exists and $\int_a^b f \, d\alpha = k [\alpha(b) - \alpha(a)]$. (D) (i) If $f_1 \in \mathbb{R}(\alpha)$ and $f_2 \in \mathbb{R}(\alpha)$ on [a, b], then prove that $f_1 + f_2 \in \mathbb{R}(\alpha)$ and $\int_a^b (f_1 + f_2) \, d\alpha$ $= \int_a^b f_1 \, d\alpha + \int_a^b f_2 \, d\alpha$.

(ii) Write definition of Integration of vector valued function.

Or

- (i) Let $Y : [a, b] \in \mathbb{R}^k$ be a curve. If $C \in (a, b)$, then prove that $\wedge_Y (a, b) = \wedge_Y (a, c) + \wedge_Y (c, b)$.
- (ii) Write definition of unit step function.

Unit-II

2. (A) If the outer measure of a set is zero then the set is measurable.
(B) Define Ring of sets.
(C) Prove that the interval (a, ∞) is measurable.

Or

Show that m^* is translational inveriant.

(D) (i) Prove that the outer measure of an interval is its length. 6

Code No. : B02–203

(ii) Prove that the inter section and distrevence of two measurable sets are measurble. 6

Or

(i) If E_1 and E_2 are any measurable sets then prove that

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

(ii) Let A be any set and E_1 , E_2 , ..., E_n a finite sequence of disjoint measureble sets. Then prove that

$$m^*\left[\mathbf{A} \cap \left(\bigcup_{i=1}^n \mathbf{E}_i\right)\right] = \sum_{i=1}^n m^*(\mathbf{A} \cap \mathbf{E}_i).$$

Unit-III

- **3.** (A) Write definition of semiring. 2
 - (B) Define Caratheodary outer measure.
 - (C) Prove that every null set is measurable.

Or

Let (X, B, μ) be a measure space. If $E_i \in B$, $\mu(E_1) < \infty$ and $E_i \subset E_{i+1}$, then prove that

$$\mu\left(\bigcap_{i=1}^{\infty} \mathbf{E}_i\right) = \lim_{n \to \infty} \mu\left(\mathbf{E}_n\right).$$

- (D) (i) Prove that the set function μ^* is an outer measure. 6
 - (ii) If $A \in a$, then prove that $\mu^*(A) = \mu(A)$. 6

[3] P. T. O.

2

4

Code No. : B02–203

Or

- (i) Let (X, S, μ) be a σ -finite measure space Σ a semiring of sets such that $S \subset \Sigma \subset B$ and $\overline{\mu}$ a measure on Σ . If $\overline{\mu} = \mu$ on S, then $\overline{\mu} = \mu$ on Σ .
- (ii) A set is outer measurable iff A' is outer measurable.

Unit-IV

- **4.** (A) Define convex function. 2
 - (B) Write statement of Egoroff's theorem. 2
 - (C) State and prove the fundamental theorem of Integral calculus. 4

Or

State and prove that Jordan Decomposition theorem.

- (D) (i) Define summable and absolutely summable. 6
 - (ii) A normed linear space X is complete if and only if every absolutely summable sequence is summable.

Or

- (i) State and prove the Riesz-fischer theorem.
- (ii) Write statement of Riesz theorem.

[4] **4/25**