Roll No.

Total No. of Printed Pages : 4

Code No. : B04-103

Fourth Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper I

FUNCTIONAL ANALYSIS - II

Time : Three Hours]

[Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450.

Unit-I

- 1. (A) Define closed graph.
 - (B) If X be a linear space then define entension f to X.
 - 2

2

- (C) Let T be a closed linear map of Banach space X
 - into Banach space Y then T is continuous. 4

Or

Let X be a complex linear space and let M be a linear subspace of X. Let p be a seminorm on X and f be a linear functional defined on M such that $|g(x)| \le p(x)$ for all $x \in X$.

(D) Let X be a normed linear space over field K and M be a linear subspace of X. Suppose that x_0 be vector not in M and $d(X_0, M) = d > 0$. Then their exists $g \in X^*$ such that $g(M) = \{0\}, g(x_0) = d$ and ||g|| = 1. 12

Or

State and closed graph theorem.

Unit-II

	Or	
	(C) Every innerproduct space is normed space.	4
	(B) Define orthonormal set.	2
2.	(A) Define uniformly convex.	2

State and prove parallelogram law.

(D) State and prove Bessel's inequality. 12

Code No. : B04–103

Or

Let S = { x_1 , x_2 ,} be linearly independent sequence in an inner product space. Then there exists an orthonormal sequence T = { y_1 , y_2 ,} such that L(s) = L(T).

Unit-III

- **3.** (A) Define adjoint operator. 2
 - (B) Give the definition of orthogonal complement. 2
 - (C) Let M be a linear subspace of Hilbert space H. Then M is closed if and only if $M = M^{11}$. 4

Or

Let M be a closed subspace of a Hilbert space H and $x \in H$. Then there exist unique element $y \in M$ and $z \in M^1$ such that x = y + z *i.e.*, $H = M + M^1$.

(D) A closed convex subset c of a Hilbert space H contains a unque vector of smallest norm. 12

Or

Every Hilbert space H is reflexive.

[3] P. T. O.

Code No. : B04–103 Unit-IV

4.	(A) Define self adjoint operator.	2
	(B) Define normal and unitary operator.	2
	(C) Every positive operator is self adjoint.	4

Or

- If T_1 and T_2 are normal operators on a Hilbert space H with property that either commutes with adjoint of the other than $T_1 + T_2$ and T_1T_2 are normal.
- (D) Let S and T be unitary operators on Hilbert space H. Then, 12
 - (i) T is isometric
 - (ii) || T || = 1 provided $H \neq \{0\}$
 - (iii) T is normal
 - (iv) T is unitary
 - (v) T^{-1} (= T^*) is unitary

Or

If T is positive operator on a Hilbert space H then I + T is non singular.

 $\Box \Box \Box \Box \Box \Box d \Box \Box \Box \Box \Box$

[4] **4/25**