Code No. : B04-103

Roll No.
Total No. of Printed Pages : 4

Code No. : B04-103

Fourth Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper I

FUNCTIONAL ANALYSIS - II

Time: Three Hours]_ _ _ _ _ [Maximum Marks: 80
Note : - Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.

- Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450.

Unit-I

1. (A) Define closed graph.

2
(B) If X be a linear space then define entension f to X .
(C) Let T be a closed linear map of Banach space X into Banach space Y then T is continuous. 4

Or
Let X be a complex linear space and let M be a linear subspace of X . Let p be a seminorm on X and f be a linear functional defined on M such that $|g(x)| \leq p(x)$ for all $x \in \mathrm{X}$.
(D) Let X be a normed linear space over field K and M be a linear subspace of X. Suppose that x_{0} be vector not in M and $d\left(\mathrm{X}_{0}, \mathrm{M}\right)=d>0$. Then their exists $g \in \mathrm{X}^{*}$ such that $g(\mathrm{M})=\{0\}, g\left(x_{0}\right)=d$ and $\|g\|=1$.

Or
State and closed graph theorem.

Unit-II

2. (A) Define uniformly convex.
(B) Define orthonormal set. 2
(C) Every innerproduct space is normed space.

Or

State and prove parallelogram law.
(D) State and prove Bessel's inequality.

Code No. : B04-103
Or
Let $S=\left\{x_{1}, x_{2}, \ldots ..\right\}$ be linearly independent sequence in an inner product space. Then there exists an orthonormal sequence $\mathrm{T}=\left\{y_{1}, y_{2}, \ldots.\right\}$ such that $\mathrm{L}(s)=\mathrm{L}(\mathrm{T})$.

Unit-III

3. (A) Define adjoint operator.

2
(B) Give the definition of orthogonal complement. 2
(C) Let M be a linear subspace of Hilbert space H .

Then M is closed if and only if $M=M^{11} . \quad 4$

Or

Let M be a closed subspace of a Hilbert space H and $x \in \mathrm{H}$. Then there exist unique element $y \in \mathrm{M}$ and $z \in \mathrm{M}^{1}$ such that $x=y+z$ i.e., $\mathrm{H}=$ $\mathrm{M}+\mathrm{M}^{1}$.
(D) A closed convex subset c of a Hilbert space H contains a unqiue vector of smallest norm. 12

Or
Every Hilbert space H is reflexive.
[3]
P. T. O.

Code No. : B04-103

Unit-IV

4. (A) Define self adjoint operator.
(B) Define normal and unitary operator.
(C) Every positive operator is self adjoint.

Or
If T_{1} and T_{2} are normal operators on a Hilbert space H with property that either commutes with adjoint of the other than $\mathrm{T}_{1}+\mathrm{T}_{2}$ and $\mathrm{T}_{1} \mathrm{~T}_{2}$ are normal.
(D) Let S and T be unitary operators on Hilbert space H. Then,
(i) T is isometric
(ii) $\|\mathrm{T}\|=1$ provided $\mathrm{H} \neq\{0\}$
(iii) T is normal
(iv) T is unitary
(v) $\mathrm{T}^{-1}\left(=\mathrm{T}^{*}\right)$ is unitary

Or

If T is positive operator on a Hilbert space H then $I+T$ is non singular.

