Roll No.
Total No. of Printed Pages: 4

Code No. : B02-103

Second Semester Online Examination, May-June, 2022

M.Sc. MATHEMATICS

Paper I

ADVANCED ABSTRACT ALGEBRA II

Time : Three Hours] [Maximum Marks : 80

Note : - Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.

- Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450 words.

Unit-I

1. (A) Define basis with an example.

2
(B) Define primary modules with an example.

2
(C) Show that a non-zero finitely generated vector space always admits a finite basis.

4

Or

Show that every submodule of a noetherian module is finitely generated.
P. T. O.

Code No. : B02-103
(D) Define nil ideal, nilpotent ideal and show that any nilpotent left ideal in an artinian ring is always nilpotent,

Or
State and prove Hilbert Basis theorem.

Unit-II

2. (A) Define regular transformation.
(B) If $T_{1}, T_{2} \in \operatorname{Hom}(U, V)$ then show that $\left(T_{1}+T_{2}\right) \in$ Hom (U, V).2
(C) Is T $(\alpha, \beta)=(\alpha+\beta, \alpha-\beta, \beta), \forall(\alpha, \beta) \in \mathrm{V}_{2}(\mathrm{R})$ a linear transformation?

Or
Find the matrix of T relative to the basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ where $\alpha_{1}=(1,1), \alpha_{2}=(-1,0)$ and $\mathrm{T}(x, y)=$ $(4 x-x y, 2 x+y)$.
(D) Show that rank (T) + nullity (T) $=\operatorname{dim} \mathrm{V}$, where $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$.

Or
Let V be the vector space and $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is defined as $\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right) T=\alpha_{1}+2 \alpha_{2} x+$ $3 \alpha_{3} x^{2}$. Compute the matrix of T is the basis A , $1+x, 1+x^{2}, 1+x^{3}$ and find CAC^{-1}.
[2]

Code No. : B02-103

Unit-III
3. (A) Define companian matrix with example.
(B) Define trace of a matrix with example.
(C) Determine all invariant subspaces of $\mathrm{A}=\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right)$ on R^{2}.

Or

Show that similar matrices have the same eigen values.
(D) Find the canonical nilpotent forms of the following

$$
\begin{gathered}
\operatorname{matrix}\left[\begin{array}{rrr}
-2 & 1 & 1 \\
-3 & 1 & 2 \\
2 & -1 & -1
\end{array}\right] . \\
\mathbf{O r}
\end{gathered}
$$

If $\operatorname{dim} \mathrm{V}=n$ and if $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ has all its characteristics roots in F then show that T satisfies a polynomial of degree n over F.

Unit-IV

4. (A) Define row module of a matrix with an example.
P. T. O.

Code No. : B02-103

(B) Find rational canonical form of $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & 2 & 1 & 0 \\ 4 & 2 & 3 & 0\end{array}\right]$.
(C) Show that by an example that not every matrix is similar to a diagonal matrix.

Or

Show that T or M is a submodule of M .
(D) Suppose :
(i) V is a finite dimensional vector space over a field F.
(ii) $\mathrm{T} \in \operatorname{Hom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$.
(iii) $f(x)=g(x) h(x)$ is $\mathrm{F}[x]$ such that $[g(x), h(x)]=1$.
Show that $f(\mathrm{~T})=0$ if and only if

$$
\mathrm{V}=\operatorname{ker} g(\mathrm{~T}) \oplus \operatorname{ker} h(\mathrm{~T})
$$

Or
Describe the process of diagonalization of A, $m \times n$ matrix over $\mathrm{P} \mid \mathrm{D} \mathrm{R}$ such that
$\mathrm{A}=\operatorname{diag}\left(a_{1}, a_{2}, \ldots . a_{r}, 0,0 \ldots .0\right) a_{i} \mid a_{i+1}$.
$\neg \square \square \square \square \mathrm{d} \square \square \square \square \square$

