Roll No. Total No. of Printed Pages : 6

Code No. : B02-503

Second Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper - V

ADVANCED DISCRETE MATHEMATICS - II

Time : Three Hours]

[Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450 words.

Unit-I

- **1.** (A) Define complete graph with example.
 - (B) Define N-cube graph with example.
 - (C) Show that the total number of odd degree vertices of a (*p*-g) graph is always even. 4

Or

If every region of a simple planar graph with n-vertices and e-edges embedded in a plane is

2

2

Code No. : B02–503

- bounded by *k*-edges, then show that $e = \frac{k(n-2)}{(k-2)}$.
- (D) (i) A simple graph G is a spanning tree if and only if G is connected. 6
 - (ii) Show that if a tree has exactly two pendent vertices, the degree of every other vertex is two.

Or

- (i) If G is a connected planar graph with *n*-vertices and *r*-region, then show that
 - n-e+r=2.
- (ii) Suppose G is graph with 1000 vertices and 3000 edges. Is G planar ?

Unit-II

- **2.** (A) Define Regular graph with example. 2
 - (B) How many vertices and edges in the graph $k_{m, n}$. 2
 - (C) Define tree traversal and explain kinds of tree traversal.

Or

Form a binary search tree for the data 16, 24, 7, 5, 8, 20, 40, 3 in the given order.

(D) Define shortest path with application. Use Dijkstra's algorithm to find shortest path from a to z of the following graph. 12

- (i) Show that the maximum number of lines among all p point graphs with no triangles is $\frac{p^2}{4}.$
- (ii) The following statements are equivalent for a connected graph G (i) G is Eulerian (ii) Every point of G has even degree (iii) The set of lines of G be partitioned into cycles.

Unit-III

- 3. (A) Define finite state machine.
 (B) Define *k*-equivalent states with example.
 (C) Design a finite state machine M which can add
 - two binary numbers. 4

[3] P. T. O.

Code No. : B02–503

Or

Let $M = (S, I, O, f, g, S_0)$ be a finite state machine. Then the relation "*k* equivalence on the sets of all states of M" is an equivalence relation.

(D) Find π_0 , π_1 and π_2 for the following finite state machine, also define *o*-equivalent. 12

State	Input		Output			
	0	1				
S ₀	S_1	S_5	0			
S ₁	S_0	S_5	0			
S ₂	S_6	S_0	0			
S ₃	S_7	S_1	0			
S ₄	S_0	S ₆	0			
S ₅	S_7	S_2	1			
S ₆	S_0	S ₃	1			
S ₇	S_0	S_2	1			
Or						

Minimize finite state machine M of the following also define *o*-equivalent.

Code No. : B02–503

State	Inj	put	Output
	0	1	
S ₀	S ₃	S_1	1
S ₁	S_4	S_1	0
S ₂	S ₃	S_0	1
S ₃	S_2	S ₃	0
S ₄	S_1	S_0	1

4.	(A) Define turing machine with example.	2

(B) Define finite state language.

(C) Show that the language $L = \{a^k b^k : k \ge 1\}$ is not a finite state language. 4

Or

Prove that for any trasition function δ and for any two input strings x and y,

 $\delta (a_1, xy) = \delta (\delta (a_1, x), y).$

(D) Define Mealy machine with example. Construct Mealy machine which is equivalent the Moore machine given in the table : 12

[5] P.T.O.

2

Code No. : B02–503

Poesent State	Next	State	Output
	a = 0	a = 0	
S_0	S ₃	S_1	0
S_1	S_1	S ₂	1
S_2	S_2	S ₃	0
S ₃	S ₃	S_0	0

Also construct the diagram of Mealy machine.

Or

Define Moore machine with example. Mealy machine is given that, construct a Moore machine equivalent to this Mealy machine.

