Roll No. \qquad Total No. of Printed Pages: 4 Code No. : B02/403

Code No. : B02/403

Second Semester Online Examination, May-June, 2022

M. Sc. MATHEMATICS

Paper IV

COMPLEX ANALYSIS - II

Time: Three Hours] - - - - - - - - [Maximum Marks: 80
Note : Part A and B of each question in each unit consist of 'very short answer type question' which are to be answered in one or two sentences. Part C 'Short answer type' and D 'Long answer type' of each question should be answered within the word limit mentioned.

UNIT-I

1. (A) Define Euler's Gamma function. 2
(B) Define Riemann Zeta function. 2
(C) Find the residue at the poles of $\overline{(\mathrm{Z})}$.
(word limit 200-250) 4

OR

Prove that the zeta function $G(Z)$ can be extended to a meromorphic in the whole plane with only a simple pole at $Z \neq 1$ and $\operatorname{Res}_{Z=1}, G(Z)$ for $Z \neq 1, Z$ satisfies Riemann's functional equation.
(D) To prove:

$$
\sqrt{\pi} \quad(2 \mathrm{Z})=2^{2 z-1} \sqrt{\mathrm{Z}}\left(\mathrm{Z}+\frac{1}{2}\right)
$$

(word limit 400-450) 1
OR
State and Prove Mittag-Leffler Theorem.

UNIT-II

2. (A) Define Analytic Continuation.
(B) Write the statement of Mean-value Theorem for Harmonic function. 2
(C) Prove that there cannot be more than one Analytic contrinuation of a function $f(z)$ into the same domain.
(word limit 200-250) 4
OR
Let $\mathrm{D}=\{z:|z|<\mid\}$ be the unit disc with the boundry $\partial \mathrm{D}=\{z:|z|=1\}$ and let f : $\partial \mathrm{D} \rightarrow \mathrm{R}$ be a continuous function. Then there is a continuous function $u: \overline{\mathrm{D}} \rightarrow \mathrm{R}$ such that $4(Z)=f(0)$ for $z \in \partial \mathrm{D}$.

Code No. : B02/403

(D) Prove that if the radim of on convergence
of the power series $f(\mathrm{Z})=\sum_{n=p}^{0} a_{n}\left(\mathrm{Z}-\mathrm{Z}_{0}\right)^{n}$ is non-zero finite, then $f(\mathrm{Z})$ has at least sigularity on the circle of convergence.
(word limit 400-450) $\mathbf{1 2}$
OR
State and prove monodromy theorem.

UNIT-III

3. (A) Write the statement of Poisson Jenson formula.

2
(B) Define Exponents of Convergence. 2
(C) Let G be R bounded Dirichlet Region then for each $A \in G$ there is a Green's Function on G with singularity at a.
(word limit 200-250) 4

OR

Find the order of the function $\cos \mathrm{Z}$.
(D) State and prove Jensen's Inequality.
(word limit 400-450) 12
OR
State and prove Hadamord's Three circles theorem.

Code No. : B02/403

UNIT-IV

4. (A) Write the statement of Bieberbouh's conjecture.
(B) Write the statement of the Great Picard theorem.
(C) State and prove Little Picard Theorem.
(word limit 200-250) 4
OR
Let f be an analytic function in a region containing the closure of the disc $\mathrm{D}=\{\mathrm{Z}$: $|Z|<1\}$ and $f(0)=0 f^{\prime}(0)=1$. Then $f(\mathrm{D})$ containg a disc of radius.
(D) State and prove Montel caratheodary theorem.
(word limit 400-450) $\mathbf{1 2}$
OR
State and prove Schotky's theorem.

